'mathematical physics'에 해당되는 글 2건

  1. 2007.09.06 Mathematical Physics 2
  2. 2007.09.03 Mathematical Physics 1

 

Recapitulation

- Vector space V (to axioms)

- basis

- inner product <\vec{v},\vec{u}>

- dot product VV->k

-cross product VV->V

\vec{B} \times \vec{C} = 
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}\\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z} 
\end{vmatrix}
= \left | \vec{B} \right \vert \left | \vec{C} \right \vert 
\sin \theta_{k} \hat{n}

 dt
\begin{pmatrix}
a & b \\
c & d 
\end{pmatrix}
=ad-bc
dt
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i 
\end{pmatrix}
=aei+dhc+bfy-(ceg+bdi+hfa)

diagonal하게 생각하면, 기억하기 쉽다.

geometrical meaning of \vec{B} \times \vec{C}

벡터 B가 x축 위에 누워있고, 벡터 C가 xy평면의 1사분면 중 어느 점을 가리키고 있는 상황이다.
벡터 B와 벡터 C 사이의 각은 θBC이다.

\vec{B}=B \hat{e_{1}} \vec{C}=C \cos \theta_{BC} \hat{e_{1}} + 
C \sin \theta_{BC} \hat{e_{2}} \Rightarrow \vec{B} \times \vec{C} 
= BC \cos \theta_{BC} \hat{e_{1}} \times \hat{e_{1}} 
+ BC \sin \theta_{BC} \hat{e_{1}} \times \hat{e_{2}} =BC \sin \theta_{BC} \hat{e_{3}}

 \hat{e_{1}} \times \hat{e_{1}} = 
\begin{vmatrix}
\hat{e_{1}} & \hat{e_{2}} & \hat{e_{3}} \\
1 & 0 & 0 \\
1 & 0 & 0 
\end{vmatrix}
=0

\hat{e_{1}} \times \hat{e_{2}} = 
\begin{vmatrix}
\hat{e_{1}} & \hat{e_{2}} & \hat{e_{3}} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{vmatrix}
= \hat{e_{3}}

\hat{e_{1}} \times \hat{e_{2}} = \hat{e_{3}}; \hat{e_{2}} \times \hat{e_{3}} = -\hat{e_{1}}; \hat{e_{3}} \times \hat{e_{1}} = \hat{e_{2}} \hat{e_{2}} \times \hat{e_{1}} = -\hat{e_{3}}; \hat{e_{3}} \times \hat{e_{2}} = -\hat{e_{1}}; \hat{e_{3}} \times \hat{e_{1}} = -\hat{e_{2}}

\vec{A} \times \vec{B} = - \left( \vec{B} \times \vec{A} \right) 

순서를 바꾸면 negation이 되는 이유

\begin{vmatrix}
\hat{e_{1}} & \hat{e_{2}} & \hat{e_{3}} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{vmatrix} \begin{vmatrix}
\hat{e_{1}} & \hat{e_{2}} & \hat{e_{3}} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{vmatrix}


triple scalar product

\vec{A} \cdot \left( \vec{B} \times \vec{C} \right)

\left | \vec{A} \right \vert \underbrace{\left | \vec{B} \right \vert \left | \vec{C} \right \vert \sin \theta_{BC}}_{area} \cos \beta

geometrical meaning: volume of pipe


triple cross product

\vec{A} \times \left( \vec{B} \times \vec{C} \right) \ne \left( \vec{A} \times \vec{B} \right) \times \vec{C} VVV->V \vec{A} \times \left( \vec{B} \times \vec{C} \right) = -\vec{C} \times \left( \vec{A} \times \vec{B} \right)
= \vec{C} \times \left( \vec{B} \times \vec{A} \right) \vec{A} \times \left( \vec{B} \times \vec{C} \right) = \vec{B} \left( \vec{A} \cdot \vec{C} \right)
-\vec{C} \left( \vec{A} - \vec{B} \right)

Levi-civita symbol

εijk

http://en.wikipedia.org/wiki/Levi-Civita_symbol

ε123 = ε231 = ε312 = 1 ε132 = ε213 = ε321 = − 1

나란히 있는 두 숫자의 순서가 바뀌면 1의 부호가 바뀐다라고 생각하면 쉬움. \epsilon_{122}=\epsilon_{233}=\epsilon_{113}= \cdots =0

같은 숫자가 두개 있으면 0이라고 생각하기.

& Any permutations of two indices will introduce "-" sign


Usefulness of εijk

\hat{e_{i}} \times \hat{e_{j}} = \sum_{k} \epsilon_{ijk} \hat{e_{k}} where i,j,k=1,2,3

eg.

\hat{e_{1}} \times \hat{e_{2}} = \sum_{k} \epsilon_{12k}\hat{e_{k}}=\underbrace{\epsilon_{123}}_{1}

Another useful symbol: Kronedeker delta


http://en.wikipedia.org/wiki/Kronecker_delta

http://mathworld.wolfram.com/KroneckerDelta.html

\delta_{ij} =
\begin{cases}
0, & \mbox{if }i \ne j \\
1, & \mbox{if }i=j
\end{cases}

eg. (m & n are dummy indices)

\vec{B} \times \vec{C} = \left( \sum_{m=1}^{3} B_{m} \hat{e_{m}} \right)
\times \left( \sum_{n=1}^{3} C_{n} \hat{e_{n}} \right)

 = \sum_{m, n} B_{m}C_{n} 
\underbrace{\left( \hat{e_{m}} \times \hat{e_{n}} \right)}_{\sum_{j} 
\epsilon_{mnj} \hat{e_{j}}}

=\sum_{m,n,j} B_{m}C_{n} \epsilon_{mnj} \hat{e_{j}}

jth component

BmCnεmnj
m,n
BmCnεmn1
m,n

= B2C3B3C2

\sum_{k=1}^{3} \epsilon_{mnk} \epsilon_{ijk} = 
\delta_{mi} \delta_{nj} - \delta_{mj} \delta_{ni}

εmjkεnjk = 2δmn
j,k

\sum_{i,j,k} \epsilon_{ijk}^{2}=6


eg 2. (Einstein convention - sum을 나타내는 sigma 기호 생략)

\vec{A} \times \left( \vec{B} \times \vec{C} \right)

 = \left \{ \left( A_{i} \hat{e_{i}} \right) \times 
\left \{ \vec{B} \times \vec{C} \right \}_{j} \hat{e_{j}} \right \}

= A_{i} \underbrace{\left( \vec{B} \times \vec{C} \right)_{j}}_{B_{m}C_{n} \epsilon_{mnj}} \underbrace{\hat{e_{i}} \times \hat{e_{j}}}_{\sum_{k} \underbrace{\epsilon_{ijk}}_{-\epsilon_{ikj}} \hat{e_{k}}}

 =-A_{i}B_{m}C_{n} \underbrace{\epsilon_{mnj} \epsilon_{ikj}}_{\delta_{mi} \delta_{nk} -  \delta_{mk} \delta_{ni}} \hat{e_{k}} 

=-A_{i}B_{m}C_{n} \delta_{mi} \delta_{nk} \hat{e_{k}} + A_{i}B_{m}C_{n} \delta_{mk} \delta_{ni} \hat{e_{k}} =-A_{m}B_{m}C_{n} \delta_{nk} \hat{e_{k}} + A_{i}B_{k}C_{n} \delta_{ni} \hat{e_{k}} =-A_{m}B_{m}C_{n} \hat{e_{n}} + A_{n}B_{k}C_{n} \hat{e_{k}} =-\left( \vec{A} \cdot \vec{B} \right) \vec{C} + \left( \vec{A} \cdot \vec{C} \right) \vec{B}


gradient operator

\nabla \phi \left( x,y \right)

=\frac{\partial \phi}{\partial x} \hat{e_{x}} + \frac{\partial \phi}{\partial y} \hat{e_{y}}

d \phi \left( x,y \right) = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy = \nabla \phi \cdot d \vec{r} -(1)

여기서 d \vec{r} = dx \hat{e_{x}} + dy \hat{e_{y}}

식 (1)이 최대가 되려면 \cos \theta \left | \nabla \phi \right \vert \left | d \vec{r} \right \vert 에서 maximum at θ = 0

θd \vec{r} 벡터와 \nabla \phi 벡터 사이의 각

신고
Posted by 세레

 

Q: What is a vector?



short answer: physical quantities that have a magnitude as well as a direction.
eg.
사용자 삽입 이미지

r, v, a in vector


exteded definition (answer): an element of a vector space.

Q: What is a vector space?


answer: a set whose elements are vectors that obey a certain set of rules.
1. If ,
2. If , then (c: constant)
3.
4. such that
5. such that
6.
7.
8.
9.
10.
eg 0.
eg 1.
cf.

eg 2. V: matrices

eg 3. Laplace equation (→ normal modes)

<basis> a set of linearly independent vectors that spans V. say
forms a basis for V


if and only if ai = 0
and
(any vectors in V)

<inner product>

a mapping that maps two vectors to a scalar. < vi,vj >
1) < au1 + bu2,v > = a < u1,v > + b < u2,v > (a,b are constants)
2)
3) or 0 if and only if
eg 1. dot product



eg 2.


Dot product






Cross product



신고
Posted by 세레

카테고리

분류 전체보기 (447)
Science (283)
ars boni et aequi (55)
Routine (83)
Language (23)
Q&A (1)
me2day (1)

달력

«   2017/11   »
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30    

티스토리 툴바